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A NEW TOPOLOGY FROM AN OLD ONE

Halgwrd Mohammed Darwesh*

Abstract. In the present paper we construct and introduce a new
topology from an old one which are independent each of the other.
The members of this topology are called ωδ-open sets. We investi-
gate some basic properties and their relationships with some other
types of sets. Furthermore, a new characterization of regular and
semi-regular spaces are obtained. Also, we introduce and study
some new types of continuity, and we obtain decompositions of some
types of continuity.

1. Introduction

A subset A of a topological space X is called regular open [18] if
A = intClA. The collection of all regular open subsets of a topological
space (X, τ) forms a base for a topology τs on X coarser than τ , (X, τs) is
called the semiregularization of (X, τ). In 1968, Velic̆ko [20], has defined
δ-open and θ-open sets to investigate some characterizations of H-closed
spaces, and he showed that the collection of all θ-open and δ-open subsets
of a topological space (X, τ) form topologies on X which are denoted by
τθ and τδ, respectively. It is well known that τs = τδ and τθ ⊆ τδ ⊆ τ . In
1982, Hdeib [7] introduced the notations of ω-closedness and ω-openness.
The collection of all ω-open subsets of a space (X, τ) is a topology on X
which is denoted by τω and it is finer than τ . Al-Hawary et. al. [1] and
Ekici et. al. [5] have introduced the concepts of ωo-open and ωθ-open
sets, respectively. Also, they showed that the collection of all ωo-open
sets ωoO(X) and the collection of all ωθ-open sets ωθO(X) are topologies
on X such that τ ⊆ ωθO(X) ⊆ ωoO(X) ⊆ τω. In Section 2, we will offer
topology on X by utilizing the new notion of sets which we call ωδ-
open sets. This topology is strictly finer than each of ωθO(X) and the
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semiregularization topology of X and it is strictly coarser than ωoO(X).
Moreover, it is independent of τ . Furthermore, we introduce some other
new notions of sets and we will obtain new characterizations of regular
and semi-regular spaces. After Levine’s decomposition of continuity [9],
authors in topological spaces have defined some type of continuity and
they obtained some decompositions of some types of continuity such as
[2, 19, 3, 6]. In section 3, we introduce a new type of continuity by using
the concept of ωδ-open sets and some other weaker forms of continuity
and we obtain some decompositions of some types of continuity.

2. Preliminaries

Throughout the present paper, spaces always mean topological spaces
on which no separation axioms are assumed unless explicitly stated. Let
A be a subset of a space X. The closure and interior of A are denoted
by ClA and intA, respectively.

Definition 2.1. A subset G of a topological space (X, τ) is called
δ-open (resp. θ-open) set [20] if for each x ∈ G, there exists an open set
O containing x such that intClO ⊆ G (resp. ClO ⊆ G).

For a subset A of a space X, the intδA and intθA will be denoted
the δ-interior and θ-interior of A, respectively.

Definition 2.2. A space (X, τ) is said to be semi-regular [15] if
τ = τδ.

Theorem 2.3. A space (X, τ) is regular [11] if and only if τ = τθ.

Definition 2.4. A subset U of a topological space (X, τ) is called
ω-open [7] (resp. ωo-open [1] and ωθ-open [5])set if for each x ∈ U , there
exists an open set O containing x such that O−U (resp. O− intU and
O − intθU) is countable.

The ω-interior of a subset A of a space X is denoted by intωA.

3. A new topology

Definition 3.1. A subset U of a topological space (X, τ) is called
ωδ-open if for each x ∈ U , there exists an open set G containing x such
that G− intδU is countable. The complement of ωδ-open sets are called
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ωδ-closed sets. The family of all ωδ-open (resp. ωδ-closed) subset of a
space X are denoted by ωδO(X) (resp. ωδC(X)).

It is easy to see that each clopen, θ-open, ωθ-open, regular open and
δ-open sets are ωδ-open and each ωδ-open set is ωo-open and ω-open,
but not conversely. The following examples support our claim.

Example 3.2. Let X={a, b} and τ={φ,{a},X}. Then τδ= {φ,X}=
τθ and ωδO(X)={φ, {a}, {b}, X}=ωθO(X)=ωo(X)=τω. Thus the set
A={b} is ωδ-open, ωθ-open, ωo-open and ω-open but it is neither clopen,
θ-open, δ-open nor open.

Example 3.3. Let the set of all real number R be equipped with
the topology τ= {φ,[0, 1], R}. The set A = [0, 1] is open, ωo-open and
ω-open but it is neither ωδ-open, θ-open nor δ-open.

Example 3.4. Let the set of all real number R be equipped with the
topology τ = {φ,Qc,Q ∩ (0, 1),Qc ∪ (Q ∩ (0, 1)),R}, where Qc and Q
are denoted the set of all irrational and rational numbers, respectively.
Then the set A = Qc is ωδ-open set but not ωθ-open.

From the above examples, we conclude that the concepts of ωδ-open
sets and open sets are independent topological concepts.

Theorem 3.5. Let U be a subset of a space X. Then U is ωδ-open
if and only if for each x ∈ U , there exists an open set G containing x
and a countable set C such that G− C ⊆ intδU .

Proof. Let U be an ωδ-open subset of X and let x be any element of
U . Then by Definition 3.1, there exists an open set G containing x such
that the set C = G − intδU is countable. Therefore, G − C ⊂ intδU .
Conversely; let x ∈ U . Then by hypothesis, there exists an open set G
containing x and a countable set C such that G − C ⊆ intδU . Thus
G− intδU ⊆ C, this means that G− intδU is countable. Hence U is an
ωδ-open set.

Theorem 3.6. For any space X, the family ωδO(X) forms a topology
on X.

Proof. Since φ and X are δ-open subsets of X and each δ-open set
is ωδ-open, then φ, X ∈ ωδO(X). Let U, V ∈ ωδO(X) and x ∈ U ∩ V .
Then there exist open sets G and O both containing x such that G −
intδU and O − intδV are countable sets. Since G ∩ O − intδ(U ∩ V ) ⊆
(G− intδU) ∪ (O − intδV ), then G ∩ O − intδ(U ∩ V ) is a countable
subset of X. Hence U ∩ V ∈ ωδO(X). Let {Uλ; λ ∈ Λ} ⊆ ωδO(X)
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and x ∈ ⋃{Uλ;λ ∈ Λ }. Then there exist λ0 ∈ Λ and an open set G
containing x such that x ∈ Uλ0 and G − intδUλ0 is countable. Since
G− intδ(

⋃{Uλ;λ ∈ Λ}) ⊆ G− intδUλ0 , then
⋃{Uλ;λ ∈ Λ} ∈ ωδO(X).

Thus ωδO(X) is a topology on X.

Remark 3.7. From what we have done above, we notice that for any
space (X, τ), τθ ⊂ τδ ⊂ ωδO(X) ⊂ ωoO(X) ⊂ τω and τθ ⊆ ωθO(X) ⊂
ωδO(X) ⊂ ωoO(X) ⊂ τω. Further, τ and ωδO(X) are independent
topologies on X.

Proposition 3.8. Let (X, τ) be a topological space. Then
(1) (X, τ) is locally countable if and only if ωδO(X) is a discrete topol-

ogy on X.
(2) (X, τ) is an anti-locally countable space if and only if (X, ωδO(X))

is anti-locally countable.

Proof. (1) Let A be any subset of X and x ∈ A. Since X is locally
countable, then there exists a countable open subset G of X contains x.
Since G− intδA ⊆ G, then G− intδA is countable. Thus A is ωδ-open.
Hence in view of Theorem 3.6, ωδO(X) is a discrete topology on X. The
converse part is obvious.
(2) Let (X, τ) be an anti-locally countable space. To show (X, ωδO(X))
is anti-locally countable. On contrary, we suppose that (X, ωδO(X))
is not anti-locally countable. Then there exists a countable non-empty
ωδ-open subset U of X. Therefore, there exists a point x ∈ U and
by Definition 3.1, there exists an open set G containing x such that
G − intδU is countable. But since G − U ⊆ G − intδU , then G − U is
countable. Since G = U ∪ (G − U), then G is a non-empty countable
open subset of X, this is impossible. Conversely, let (X, τ) be a space
for which (X,ωδO(X)) is an anti-locally countable space. We suppose
that (X, τ) is not anti-locally countable space. Then there exists a non-
empty countable open subset G of X. Let x be any point of G. Since
G − intδG ⊆ G, then G − intδG is countable and hence G is a non-
empty countable ωδ-open subset of X which is a contradiction to our
hypothesis. Hence (X, τ) is anti-locally countable.

Theorem 3.9. If (X, τ) is a Lindelöf space, then so is (X, ωδO(X)).

Proof. Let Ψ = {Vλ; λ ∈ Λ } be any ωδ-open cover of X. Then
for each x ∈ X, there exists λx ∈ Λ and an open set Gλx containing
x such that Cλx = Gλx − intδVλx is countable. Let ΛX = {λx ∈ Λ;
x ∈ X}. Then {Gλx ; λx ∈ ΛX } is an open cover of X. Since X is
Lindelöf, then there exists a countable subset Λ0 of ΛX (hence of Λ)
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such that {Gλ; λ ∈ Λ0} covers X. Therefore, the family {Vλ;λ ∈ Λ0}
covers X except the countable subset C = ∪{Cλ;λ ∈ Λ0} of X. Since
C is countable, then it is clear that there exists a countable subset Λ1

of Λ such that {Vλ;λ ∈ Λ1} covers C, and hence {Vλ;λ ∈ Λ1 ∪ Λ0} is a
countable subcover of Ψ. Thus (X, ωδO(X)) is Lindelöf.

The following example shows that the converse of the above theorem
is not true in general.

Example 3.10. Consider the particular uncountable point topology
= = {G ⊆ R; (0, 1) ⊆ G} ∪ {φ} on R ([17], Example 10, p. 44). Since
the open cover {(0, 1) ∪ {p}; p ∈ R − (0, 1)} of R has no any countable
subcover, so (R,=) is not Lindelöf. But Since =δ={φ,R}, so it is easy
to see that ωδO(R)={φ,R}, and hence (R, ωδO(R)) is Lindelöf.

Recall that a space X is said to be a nearly Lindelöf space [4] if every
regular open cover of X has a countable subcover.

Proposition 3.11. Let (X, τ) be a space such that (X,ωδO(X)) is
Lindelöf. Then (X, τ) is nearly Lindelöf.

Proof. Obvious.

The following example shows that the converse of the above proposi-
tion is not true in general.

Example 3.12. Consider the finite particular point topology τ =
{G ⊆ R; 0 ∈ G} ∪ {φ} on R ([17], Example 8, p. 44). Since τδ={φ,R},
then this space is nearly Lindelöf. But since the space (R, τ) is a locally
countable space, then by part (1) of Proposition 3.8, (R, ωδO(R)) is an
uncountable discrete space, and hence it is not Lindelöf.

Recall that a space X is said to be nearly compact [16] if each regular
open cover of X has a finite subcover. Then it is easy to see that for any
space (X, τ), compactness of (X,ωδO(X)) implies nearly compactness
of the space (X, τ). But not conversely as the following example shows:

Example 3.13. Let the set of all natural numbers N be equipped
with the indiscrete topology =ind. Then (N,=ind) is both compact and
nearly compact space. But since (N,=ind) is locally-countable, then by
part (1) of Proposition 3.8, ωδO(N) is the discrete topology on N and
hence (N, ωδO(N)) is not compact.

Example 3.14. Let the set of all real numbers R be equipped with the
co-countable topology τcoc. Then it is clear that (R, τcoc) is not compact.
But since ωδO(R) = {φ,X} = τδ, then (R, ωδO(R)) is compact.
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The last two examples show that the compactness of a space (X, τ) is
neither imply nor implied by the compactness of the space (X, ωδO(X)).

Definition 3.15. Let A be a subset of a topological space X. Then
(1) The intersection of all ωδ-closed subsets of X containing A is called

ωδ-closure of A and it is denoted by ωδClA.
(2) The union of all ωδ-open subsets of X contained in A is called

ωδ-interior of A and it is denoted by ωδintA.

Lemma 3.16. Let A and B be any subsets of a topological space X.
Then

(1) ωδClA ⊆ ClδA and intδA ⊆ ωδintA.
(2) If A ⊆ B, then ωδClA ⊆ ωδClB and ωδintA ⊆ ωδintB.
(3) x ∈ ωδClA if and only if A ∩ U 6= φ for each ωδ-open set U

containing x, and x ∈ ωδintA if and only if there exists an ωδ-
open set U such that x ∈ U ⊆ A.

(4) ωδClA ∈ ωδC(X) and ωδintA ∈ ωδO(X).
(5) A is ωδ-open (resp. ωδ-closed) if and only if A = ωδintA (resp.

A = ωδClA).
(6) ωδCl(ωδClA) = ωδClA and ωδint(ωδintA) = ωδintA.
(7) ωδCl(X −A) = X − ωδintA and ωδint(X −A) = X − ωδClA.
(8) ωδint(A ∩ B) = ωδintA ∩ ωδintB and ωδCl(A ∪ B) = ωδClA ∪

ωδClB.

Definition 3.17. A subset U of a topological space X is said to be
ωδ

δ -open ( resp. ωo
δ -open, ωθ

δ -open and ωω
δ -open), if ωδintU = intδU . (

resp. ωδintU = intU , ωδintU = intθU and ωδintU = intωU).

Remark 3.18. It is easy to see that
(1) Every ωδ-open set is ωω

δ -open.
(2) Every δ-open set is ωδ

δ -open, ωo
δ -open and ωω

δ -open.
(3) Every θ-open set is ωθ

δ -open, ωδ
δ -open, ωo

δ -open and ωω
δ -open.

(4) Every ωθ
δ -open set is ωδ

δ -open.

In Example 3.4 the set Qc is ωδ
δ -open but not ωθ

δ -open. This with the
following examples show that the converse of neither parts of the above
remark are true.

Example 3.19. Consider the topological space (R, τ), where τ=
{φ,R,Qc} and the set of all natural numbers N. Since ωδintN=φ=
intδN= intθN = intN = intωN, then N is ωω

δ -open, ωδ
δ -open, ωo

δ -open
and ωθ

δ -open. But it is neither open, δ-open, θ-open, ωδ-open nor ω-
open. However, the set Qc is ω-open but not ωω

δ -open.
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Remark 3.20. The first and second components of each of the fol-
lowing order pairs are independent, (open, ωδ

δ -open), (open, ωo
δ -open),

(open, ωθ
δ -open), (ωδ

δ -open,ωo
δ -open), (ωδ

δ -open,ωω
δ -open), (ωδ-open, ωδ

δ -
open), (ωδ-open, ωo

δ -open), (ωδ-open, ωθ
δ -open), (ωo

δ -open, ωω
δ -open) and

(ω-open, ωω
δ -open):

(1) In Example 3.2, the set A = {a} is ωδ-open, open, ω-open, ωo
δ -open

and ωω
δ -open but it is neither ωθ

δ -open nor ωδ
δ -open. However, the

set B = {b} is ωδ-open but it is neither ωδ
δ -open nor ωo

δ -open.
(2) In Example 3.14, the set A = R − N is ωδ

δ -open but it is neither
ωo

δ -open nor ωω
δ -open.

(3) In the usual space (R, τ), the set A = {0} is ωδ
δ -open, ωo

δ -open, ωθ
δ -

open and ωω
δ -open but it is neither open, δ-open, θ-open, ω-open

nor ωδ-open.

Thus we obtain the following diagram

ωo
δ − open regular open open ω − open

↖ ↓ ↗ ↘ ↑
ωδ

δ − open ← δ − open → ωδ − open → ωo − open
↑ ↑ ↑ ↘

ωθ
δ − open ← θ − open → ωθ − open ωω

δ − open
↑

clopen

Theorem 3.21. Let U be a subset of a space (X, τ). Then
(1) U is ωδ-open if and only if it is ω-open and ωω

δ -open.
(2) U is δ-open if and only if it is ωδ-open and ωδ

δ -open.
(3) U is θ-open if and only if it is ωδ-open and ωθ

δ -open.
(4) U is θ-open if and only if it is ωθ-open and ωθ

δ -open.

Proof. (1) Let U be an ωδ-open set. Then U is both ω-open and
ωω

δ -open.
Conversely, let U be an ω-open and ωω

δ -open. Then A = intωA =
ωδintA, and hence by part (6) of Lemma 3.16, A is an ωδ-open set.
The proof of the other parts are similar to the proof of part (1).

Theorem 3.22. Let U be a subset of a space (X, τ). Then
(1) If U is open and ωo

δ -open, then it is ωδ-open.
(2) If U is ωδ-open and ωo

δ -open, then it is open.
(3) U is open and ωo

δ -open if and only if it is ωδ-open and ωo
δ -open.

Proof. Obvious.
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Corollary 3.23. An ωo
δ -open subset U of a space X is open if and

only if it is ωδ-open.

The following results are characterizations of semi-regular and regular
spaces.

Theorem 3.24. Let (X, τ) be any space. Then (X, τ) is a semi-
regular space if and only if every open subset of X is both ωo

δ -open and
ωδ

δ -open.

Proof. Let X be a semi-regular space, then τδ = τ . Now, if G is
open, then intG = intδG = ωδintG, and hence it is both ωo

δ -open and
ωδ

δ -open.
Conversely; let G be any open subset of X. Then intG = G, and by our
hypothesis, the set G is both ωo

δ -open and ωδ
δ -open. Then ωδintG = intG

and ωδintG = intδG. Thus G = intδG. Hence τδ = τ . Therefore, X is
a semi-regular space.

Theorem 3.25. Let (X, τ) be any space. Then (X, τ) is a regular
space if and only if every open subset of X is both ωo

δ -open and ωθ
δ -open.

Proof. It is similar to the proof of the above result.

4. ωδ-Continuous functions and decompositions of some types
of continuity

Definition 4.1. A function f : (X, τ) → (Y, σ) is said to be an ωδ-
continuous function if the inverse image of each open subset of Y is an
ωδ-open subset of X.

Theorem 4.2. For a function f : (X, τ) → (Y, σ), the following
statements are equivalent:

(1) The inverse image of each closed subset of Y is an ωδ-closed subset
of X.

(2) f(ωδClA) ⊆ Clf(A) for each subset A of X.
(3) ωδClf−1(B) ⊆ f−1(ClB) for each subset B of Y .
(4) f−1(intB) ⊆ ωδintf−1(B) for each subset B of Y .
(5) f : (X,ωδO(X)) → (Y, σ) is continuous.
(6) For each x ∈ X and each open subset G of Y containing f(x), there

exists an ωδ-open subset U of X containing x such that f(U) ⊆ G.

Proof. Straightforward.
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Theorem 4.3. Let f :(X, τ) → (Y, σ) be an onto ωδ-continuous func-
tion. If (X, ωδO(X)) is Lindelöf, then Y is Lindelöf.

Proof. Let (X, τ) be a space for which (X, ωδO(X)) is a Lindelöf
space. Let Ψ = {Gλ; λ ∈ Λ } be any open cover of Y . Since f is ωδ-
continuous, then f−1(Gλ) is an ωδ-open subset of X for each λ ∈ Λ.
Thus {f−1(Gλ); λ ∈ Λ} is an ωδ-open cover of X. Since (X, ωδO(X))
is a Lindelöf space, then there exits a countable subset Λ0 of Λ such
that X =

⋃
λ∈Λ0

f−1(Gλ). Since f is an onto function, then Y = f(X) =
⋃

λ∈Λ0

f(f−1(Gλ)) =
⋃

λ∈Λ0

(Gλ). Thus Ψ has a countable subcover. Hence

Y is Lindelöf.

Corollary 4.4. Let f : X → Y be an onto ωδ-continuous function.
If X is Lindelöf, then so is Y .

We recall the following definitions:

Definition 4.5. A function f : X → Y is said to be a super-
continuous [14](resp. clopen-continuous [12], Strongly θ-continuous (
briefly, st.θ-continuous) [13, 10], ω-continuous [8], ωo-continuous [2] and
ωθ-continuous [5]) function, if the inverse image of each open subset of Y
is a δ-open (resp. clopen, θ-open, ω-open, ωo-open and ωθ-open) subset
of X.

Remark 4.6. It is easy to see that:

(1) Every clopen-continuous, super-continuous, st.θ-continuous and
ωθ-continuous function is ωδ-continuous.

(2) Every ωδ-continuous function is ω-continuous and ωo-continuous.
(3) Every ωθ-continuous function is ωδ-continuous.

The converse of neither part of the above remark is true. Also, the
ωδ-continuity and continuity are independent concepts, as the following
examples show:

Example 4.7. Let (X, τ) be the space of Example 3.2 and let =dis

be the discrete topology on X. Then the identity function f : (X, τ) →
(X,=dis) is an ωδ-continuous, ωθ-continuous, ωo-continuous and ω- con-
tinuous but it is neither continuous, clopen-continuous, super-continuous
nor st.θ-continuous.

Example 4.8. Let (R, τ) be the space of Example 3.3. Then the
identity function f : (R, τ) → (R, τ) is continuous, ωo-continuous and
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ω-continuous but it is neither ωδ-continuous, st.θ-continuous nor δ- con-
tinuous.

Example 4.9. Let (R, τ) be the space of Example 3.4. Then the iden-
tity function f : (R, τ) → (R, τ) is ωδ-continuous but not ωθ-continuous.

Definition 4.10. A function f : X → Y is said to be an ωω
δ -

continuous (resp. ωδ
δ -continuous, ωo

δ -continuous and ωθ
δ -continuous), if

the inverse image of each open subset of Y is an ωω
δ -open (resp. ωδ

δ -open,
ωo

δ -open and ωθ
δ -open) subset of X.

Remark 4.11. It is easy to see that
(1) Every ωδ-continuous function is ωω

δ -continuous.
(2) Every super-continuous function is ωδ

δ -continuous, ωo
δ -continuous

and ωω
δ -continuous.

(3) Every st.θ-continuous function is ωθ
δ -continuous, ωδ

δ -continuous,
ωo

δ -continuous and ωω
δ -continuous.

(4) Every ωθ
δ -continuous function is ωδ

δ -continuous.

Example 4.12. (1) The identity function f : (R, τ) → (R,=),
where τ = {φ,R,Qc} and = = {φ,R,N} is (ωδ

δ , ωω
δ , ωo

δ and ωθ
δ )-

continuous but it is neither continuous nor (copen, super, st.θ ωδ,
ωo nor ω)-continuous.

(2) The identity function f : (X, τ) → (X, τ), where (X, τ) is the space
of Example 3.2 is continuous and (ωo

δ , ωω
δ and ωδ)-continuous but

it is neither (ωδ
δ nor ωθ

δ )-continuous.
(3) The identity function f : (R, τcoc) → (R, τcoc) is continuous and ωδ

δ -
continuous but it is neither (super, st.θ, ωδ, ωo

δ nor ωθ
δ )-continuous.

(4) The identity function f : (R, τ) → (R, τ), where (R, τ) is the space
of Example 3.19 is ω-continuous but not ωδ-continuous.

(5) The identity function f : (R, τ) → (R, τ), where (R, τ) is the space
that given in Example 3.4 is (ωδ and ωδ

δ)-continuous but it is not
ωθ

δ -continuous.

The next result is the following decompositions of some types of con-
tinuity

Theorem 4.13. Let f : X → Y be a function. Then
(1) f is ωδ-continuous if and only if it is ω-continuous and ωω

δ -continuous.
(2) f is super-continuous if and only if it is ωδ-continuous and ωδ

δ -
continuous.
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(3) f is st.θ-continuous if and only if it is ωδ-continuous and ωθ
δ -

continuous.
(4) f is st.θ-continuous if and only if it is ωθ-continuous and ωθ

δ -
continuous.

Proof. (1) Let f be an ωδ-continuous function. Let G be any open
subset of Y . Then f−1(G) is an ωδ-open subset of X. So by part (1)
of Theorem 3.21 G is both ω-open and ωω

δ -open. Thus f is both ω-
continuous and ωω

δ -continuous. Conversely; let f be a function which
is both ω-continuous and ωω

δ -continuous. If G is any open subset of Y ,
then f−1(G) is both ω-open and ωω

δ -open. So by part (1) of Theorem
3.21 G is an ωδ-open subset of X. Hence f is ωδ-continuous.
The proof of other parts are similar to the proof of part (1).

Theorem 4.14. Let f : X → Y be a function. Then
(1) If f is continuous and ωo

δ -continuous, then f is ωδ-continuous.
(2) If f is ωδ-continuous and ωo

δ -continuous, then it is continuous.
(3) f is continuous and ωo

δ -continuous if and only if ωδ-continuous and
ωo

δ -continuous.

Proof. It follows from Theorem 3.22.

Definition 4.15. A function f : (X, τ) → (Y, σ) is said to be ω∗δ -
continuous if f−1(Fr(G)) is ωδ-closed for each open subset G of Y , where
Fr(G) = ClG−G.

It is easy to see that each ωδ-continuous function is ω∗δ -continuous,
but not conversely as the following example shows:

Example 4.16. Let f : (R, τcoc) → (Y,=dis), where Y = {a, b} be a

function given by f(x) =

{
a, if x ∈ Q
b, if x ∈ Qc

. Then f is ω∗δ -continuous but

it is not ωδ-continuous.

Definition 4.17. A function f : (X, τ) → (Y, σ) is said to be weakly
ωδ-continuous (simply, wωδ-continuous) if f−1(G) ⊆ ωδintf−1(ClG).

It is easy to see that each ωδ-continuous function is wωδ-continuous,
but not conversely as the following example shows:

Example 4.18. Let Y = {a, b, c} and = = {φ, Y, {a}, {b}, {a, b}} and

let f : (R, τcoc) → (Y,=) be a function given by f(x) =

{
a, if x ∈ Q

c, if x ∈ Qc
.

Then f is wωδ-continuous but it is neither ωδ-continuous nor ω∗δ -continuous.
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Since the function which given in Example 4.16, is ω∗δ -continuous but
not wωδ-continuous. Therefore, ω∗δ -continuity and wωδ-continuity are
independent concepts. Thus we obtain the following diagram, where by
”cont.” we mean ”continuous”

cont. → ωo − cont. → ω − cont.
ωo

δ − cont. ↑ ↑ wωδ − cont.
↖ ↑ ↑ ↗

ωδ
δ − cont. ← super − cont. → ωδ − cont. → ω∗δ − cont.
↑ ↑ ↑ ↘

ωθ
δ − cont. ← st.θ − cont. → ωθ − cont. ωω

δ − cont.
↑

clopen− cont.

Our final result is the following decompositions of ωδ-continuity:

Theorem 4.19. A function f : X → Y is ωδ-continuous if and only
if it is wωδ-continuous and ω∗δ -continuous.

Proof. The part ωδ-continuity implies wωδ-continuity and ω∗δ -continuity
is obvious. Conversely, suppose that f is both wωδ-continuous and ω∗δ -
continuous. To show f is ωδ-continuous. Let G be any open subset of
Y . Then by wωδ-continuity of f , we have f−1(G) ⊆ ωδintf−1(ClG)
and by ω∗δ -continuity of f , we have f−1(Fr(G)) is an ωδ-closed subset
of X. Since f−1(G)∩ f−1(Fr(G) = φ, then f−1(G) ⊆ X − f−1(Fr(G)).
Since X − f−1(Fr(G)) is ωδ-open, then by Lemma 3.16, f−1(G) ⊆
ωδint(X − f−1(Fr(G))) and since G = ClG − Fr(G), then f−1(G) ⊆
ωδintf−1(ClG)∩ ωδint(X − f−1(Fr(G))) = ωδintf−1(ClG− Fr(G)) =
ωδintf−1(G). Hence by Lemma 3.16 f−1(G) is an ωδ-open subset of X.
Thus f is ωδ-continuous.
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